Anthropic Claude Lookup

Perform a lookup with Anthropic Claude models on objects in an ROI, or on a ROI in the frame.

Overview

The Anthropic Claude Lookup node is designed to perform lookups using the powerful Claude model on objects within a Region of Interest (ROI), or on a ROI within the frame. This functionality is useful for applications requiring advanced recognition and understanding of objects or areas within a video feed.

Inputs & Outputs

  • Inputs: 1, Media Format: Raw Video
  • Outputs: 1, Media Format: Raw Video
  • Output Metadata: nodes.node_id, recognized_objs, recognized_obj_ids, recognized_obj_count, recognized_obj_delta, value_changed_delta, unrecognized_obj_count, unrecognized_obj_delta

Properties

PropertyDescriptionTypeDefaultRequired
roi_labelsRegions of interest labelshiddenYes
roisRegions of interest. Type: polygon. Default: null. Conditional on roi_labels.polygonnullYes
processing_modeProcessing mode. Options: ROIs, at Interval (rois_interval), ROIs, upon Trigger (rois_trigger), Objects in an ROI (objects).enumrois_intervalYes
intervalLookup interval. Collect objects or ROIs for lookup at least this many seconds apart.float1No
batch_sizeNumber of images to process in each Claude request. Set to more than 1 to use prompts that reference multiple images when processing_mode is rois_interval or rois_trigger.number1No
triggerQueue ROI for lookup when this condition evaluates to true. Conditional on processing_mode being rois_trigger.trigger-conditionnullNo
enable_prebufferIf true, samples ROI at interval to fill batch, and performs lookup when trigger is met. Else performs lookup when batch is full. Conditional on processing_mode being rois_trigger.boolfalseNo
objects_to_processObject types to process. ex. car,person,car.red. Conditional on processing_mode being objects.model-labelnullNo
min_obj_size_pixelsMin. width and height of an object. Conditional on processing_mode being objects.number64No
obj_lookup_size_change_thresholdObject size ratio change threshold. Slider min: 0.1, max: 2.0, step: 0.2. Conditional on processing_mode being objects.slider0.1No
max_lookups_per_objMax. attempts per object. Conditional on processing_mode being objects.number5No
anthropic_api_keyAnthropic API Key. Get it here.stringnullYes
promptClaude PrompttextnullYes
detail_levelClaude Detail Level. Options: Low, High.enumlowNo
max_tokensMaximum number of tokens to return for each request.number500No
post_processingClaude Results Post Processing. Options: Text, JSON.enumtextNo
post_proc_attribs_pathJSON path to extract object/ROI attributes from Claude response. ex. object_color. Conditional on post_processing being json.stringnullNo
display_roiDisplay ROI on video?booltrueNo
display_objinfoDisplay results on video? Options: Disabled, Bottom left, Bottom right, Top left, Top right.enumbottom_leftNo
debugLog debugging information?boolfalseNo

Prompt Examples

Generate scene description. Use with post_processing set to text.

Analyze the scene and provide a concise description of any unique, interesting, or noteworthy elements that would be suitable for a push notification alert. Focus on key details that capture the essence of what's happening or what's important in the image.

Generate structured output that can be added as ROI or object attributes.
Use with post_processing set to json, and remember to set post_proc_attribs_path to the attribute you want to add (ex. intersection_state).

Analyze these images from a traffic intersection. Return a JSON object with the following attributes:
- scene_description: A concise description of the scene.
- intersection_state: "jammed", "flowing", "empty"

Metadata

Metadata PropertyDescription
nodes.[node_id].rois.[roi_id].label_changed_deltaIndicates if there has been a change in the label of the ROI.
nodes.[node_id].rois.[roi_id].label_availableIndicates if a label is available for the ROI.
nodes.[node_id].rois.[roi_id].labelLabel contents for the ROI. String if post_processing property is text, else JSON object.
nodes.[node_id].recognized_obj_countThe count of recognized objects.
nodes.[node_id].recognized_obj_deltaThe change in the count of recognized objects.
nodes.[node_id].label_changed_obj_deltaThe change in the count of objects with changed labels.
nodes.[node_id].unrecognized_obj_countThe count of unrecognized objects.
nodes.[node_id].unrecognized_obj_deltaThe change in the count of unrecognized objects.

Example JSON

{
    "nodes": {
        "claude1": {
            "type": "claude",
            "rois": {
                "roi2": {
                    "label_changed_delta": true,
                    "label_available": true,
                    "label": {
                        "door_status": "unblocked"
                    }
                }
            },
            "recognized_obj_ids": ["2775161862"],
            "recognized_obj_count": 1,
            "recognized_obj_delta": 1,
            "label_changed_obj_delta": 1,
            "unrecognized_obj_count": 0,
            "unrecognized_obj_delta": 0,
            "objects_of_interest_keys": ["recognized_obj_ids"]
        }
    },
    "objects": [{
        "id": 2775161862,
        "source_node_id": null,
        "model_id": null,
        "label": "roi2",
        "class_id": 10600,
        "rect": {
            "left": 128,
            "top": 72,
            "width": 512,
            "height": 575
        },
        "probability": 1.0,
        "attributes": [{
            "label": "unblocked",
            "class_id": 10602,
            "probability": 1.0
        }, {
            "label": "lvm_results",
            "class_id": 10601,
            "probability": 1.0
        }, {
            "label": "lvm_roi",
            "class_id": 10600,
            "probability": 1.0
        }],
        "corr_id": "75f5141e-020a-4f27-af26-cf17b32c2544"
    }]
}