License Plate MMC Platerecognizer

High accuracy license plate + make/model/color recognition using your own Platerecognizer Snapshot API key or on-prem instance. Operates on plates previously detected using the License Plate Detection model.

Overview

This node uses Platerecognizer's Snapshot API to read license plates from vehicles that are detected using the Vehicle & License Plate models.

This node requires AI Model Node (Vehicle Detection model) -> Model Inference Node (License Plate model) -> Track Objects Node prior to it in order to function properly using the "LPR & Make/Model/Color" recognition mode.

Inputs & Outputs

  • Inputs : 1, Media Format : Raw Video
  • Outputs : 1, Media Format: Raw Video
  • Output Metadata : None

Properties

PropertyDescriptionTypeDefaultRequired
pr_modePlaterecognizer API type. Options: snapshot_cloud (API hosted by Platerecognizer), snapshot_onprem (API hosted by you using Platerecognizer docker SDK)enumsnapshot_cloudNo
pr_api_keyPlaterecognizer snapshot API Token from https://platerecognizer.com/snapshot/. Conditional on pr_mode being snapshot_cloudstringnullYes
pr_hostPlaterecognizer On-premise host URL. Conditional on pr_mode being snapshot_onpremstringhttp://localhost:8080Yes
geographiesGeographies to consider for license plate recognition. Leave blank to consider all.stringusNo
objects_to_trackObjects to perform LPR. Example: car, vehicle, truck. Unset means all.
Accepted formats:
object_label: any object of this type, with or without a classifier attribute. Example: car
object_label.class_type: any object of this type that has a specific classifier attribute. Example: car.red
object_label.*: any object of this type that has at least one classifier attribute. Example: car.* (this will match car.red, car.yellow, etc)
model-labelcar,vehicle,truckNo
display_infoDisplay LPR info on video?booltrueNo
recognition_modeRecognition mode. Options:
lpr_mmc (LPR & Make/Model/Color). perform recognition once we find a valid association between a Vehicle and a License Plate.
lpr_only (LPR Only). Will perform recognition attempts using the detected License Plate image crop.
mmc_only (Make/Model/Color Only). Performs recognition attempts using the detected Vehicle image crop.
enumlpr_mmcNo
requests_bufferLicense plate recognition buffer time in seconds. The interval (in seconds) before perform the initial LPR request and between subsequent retries.float1.0Yes
presence_bufferDuplicate rejection buffer time in secondsfloat5.0Yes
min_dimsMin object size for lookup attempt in pixelsnumber20No
max_attemptsMax object lookup attemptsnumber5No

Metadata

Metadata PropertyDescription
nodes.<node_id>License plate information as described in the JSON below.

<node_id> for License Plate Detection Nodes is of the form annotate_lprX (ex. annotate_lpr1)
"nodes":{
    "annotate_lpr*":{
        "type":"annotate_lpr",
        "license_plates_entered_delta":"<int>",
        "license_plates_exited_delta":"<int>",
        "license_plates_count":"<int>",
        "license_plates":{
            "<object_tracking_id>": {
                "plate":{
                    "type":"Plate",
                    "score":<float>,
                    "props":{
                        "plate":[
                            {
                            "value":"<license_plate_number>",
                            "score":<float>
                            }
                        ],
                        "region":[
                            {
                            "value":"<region>",
                            "score":<float>
                            }
                        ]
                    }
                },
                "vehicle":{
                    "type":"<vehicle_type>",
                    "score":<float>,
                    "props":{
                        "make_model":[
                            {
                            "make":"<make>",
                            "model":"<model>",
                            "score":<float>
                            }
                        ],
                        "orientation":[
                            {
                            "value":"<orientation>",
                            "score":<float>
                            }
                        ],
                        "color":[
                            {
                            "value":"<color>",
                            "score":<float>
                            }
                        ]
                    }
                }
            }
        }
    }
}

Format

KeyTypeDescription
license_plates_entered_deltaIntegerNumber of new license plates detected since last frame
license_plates_exited_deltaIntegerNumber of license plates that left since last frame
license_plates_countIntegerTotal number of license plates in the view right now
license_platesList of object IDsInformation about the license plate, make, model & color of each vehicle.

object_tracking_id : Unique identifier for a specific object, as specified by object.id property (see Model Inference Node )

The "plate" and "recognition" fields contents may not be present depending on the current recognition results.

Please check the json example for more details.

Objects metadata augmentation

The following information is added to the detected object's "attributes" array:

"class_id" field"label" field"probability" field
10300The recognized license plate (string)LP recognition confidence
10301Vehicle's makeLP recognition confidence
10302Vehicle's modelLP recognition confidence
10303Vehicle's colorLP recognition confidence
"objects": [{
    "id": 5750484150146564100,
    "label": "car",
    "class_id": 0,
    "probability": 0.98,
    "rect": {
        "width": 47,
        "top": 201,
        "left": 656,
        "height": 25.
    },
    "attributes": [{
        "label": "ABC1234",
        "class_id": 10300,
        "probability": 1.0,
    },
    {
        "label": "Tesla",
        "class_id": 10301,
        "probability": 1.0,
    },
    {
        "label": "Model S",
        "class_id": 10302,
        "probability": 1.0,
    },
    {
        "label": "Red",
        "class_id": 10303,
        "probability": 1.0,
    }]
}]